Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Sports Med ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684188

ABSTRACT

We analyzed the effects of load magnitude and bar velocity variables on sensitivity to fatigue. Seventeen resistance-trained men (age=25.7±4.9 years; height=177.0±7.2 cm; body mass=77.7±12.3 kg; back-squat 1RM=145.0±33.9 kg; 1RM/body mass=1.86) participated in the study. Pre- and post-exercise changes in the mean propulsive velocity (MPV) and peak velocity (PV) in the back-squat at different intensities were compared with variations in the countermovement jump (CMJ). CMJ height decreased significantly from pre- to post-exercise (∆%=-7.5 to -10.4; p<0.01; ES=0.37 to 0.60). Bar velocity (MPV and PV) decreased across all loads (∆%=-4.0 to -12.5; p<0.01; ES=0.32 to 0.66). The decrease in performance was similar between the CMJ, MPV (40% and 80% 1RM; p=1.00), and PV (80% 1RM; p=1.00). The magnitude of reduction in CMJ performance was greater than MPV (60% 1RM; p=0.05) and PV (40% and 60% 1RM; p<0.01) at the post-exercise moment. Low systematic bias and acceptable levels of agreement were only found between CMJ and MPV at 40% and 80% 1RM (bias=0.35 to 1.59; ICC=0.51 to 0.71; CV=5.1% to 8.5%). These findings suggest that the back-squat at 40% or 80% 1RM using MPV provides optimal sensitivity to monitor fatigue through changes in bar velocity.

2.
Int J Sport Nutr Exerc Metab ; 34(3): 137-144, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458183

ABSTRACT

There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.


Subject(s)
Caffeine , Creatine , Humans , Male , Anaerobiosis , Caffeine/pharmacology , Cross-Over Studies , Double-Blind Method , Polyesters
3.
Res Q Exerc Sport ; : 1-8, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271741

ABSTRACT

Background: The benefits of caffeine to physical performance have been extensively demonstrated, however, it has recently been speculated that there is an effect of the administration route on its effectiveness. Purpose: The current study investigated the effect of caffeine mouth rinse in isolation or combined with ingestion on performance in a 30-minute constant-load exercise followed by a 10-km cycling time trial. Methods: Ten physically active men performed a 30-minute constant-load exercise at 50% of the graded test Wmax, followed by a 10-km cycling time trial. Before and at the middle points of the constant-load exercise and 10-km cycling time trial, the following conditions were administered: PLA (cellulose ingestion plus mouth rinsing with magnesium sulfate), ING (5 mg.kg-1 of caffeine ingestion plus mouth rinsing with magnesium sulfate), MR (cellulose ingestion plus mouth rinsing with 1.2% caffeine), and COMB (5 mg.kg-1 of caffeine ingestion plus mouth rinsing with 1.2% caffeine). Results: During the 30-minute constant-load exercise, COMB presented a lower rating of perceived exertion (RPE) than MR (p = .04). For the 10-km time trial, the COMB was faster than MR (MR = 1363 ± 345 vs. COMB = 1291 ± 308s, Δ% = 5.57, p = .05). Mean power output was higher in COMB than PLA, ING, and MR (234 ± 15 vs. 169 ± 29, 148 ± 11, and 145 ± 12 W, respectively). There were no differences between conditions for heart rate and RPE during the 10-km time trial. Conclusion: In summary, caffeine mouth rinsing potentiated the effects of caffeine ingestion during the 10-km time trial compared to caffeine mouth rinsing alone.

4.
Article in English | MEDLINE | ID: mdl-37510665

ABSTRACT

Non-communicable diseases (NCDs) are the major cause of death worldwide and have economic, psychological, and social impacts. Air pollution is the second, contributing to NCDs-related deaths. Metabolomics are a useful diagnostic and prognostic tool for NCDs, as they allow the identification of biomarkers linked to emerging pathologic processes. The aim of the present study was to review the scientific literature on the application of metabolomics profiling in NCDs and to discuss environmental planning actions to assist healthcare systems and public managers based on early metabolic diagnosis. The search was conducted following PRISMA guidelines using Web of Science, Scopus, and PubMed databases with the following MeSH terms: "metabolomics" AND "noncommunicable diseases" AND "air pollution". Twenty-nine studies were eligible. Eleven involved NCDs prevention, eight addressed diabetes mellitus, insulin resistance, systemic arterial hypertension, or metabolic syndrome. Six studies focused on obesity, two evaluated nonalcoholic fatty liver disease, two studied cancer, and none addressed chronic respiratory diseases. The studies provided insights into the biological pathways associated with NCDs. Understanding the cost of delivering care where there will be a critical increase in NCDs prevalence is crucial to achieving universal health coverage and improving population health by allocating environmental planning and treatment resources.


Subject(s)
Diabetes Mellitus , Hypertension , Metabolic Syndrome , Noncommunicable Diseases , Humans , Noncommunicable Diseases/epidemiology , Noncommunicable Diseases/prevention & control , Diabetes Mellitus/epidemiology , Delivery of Health Care
5.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35894639

ABSTRACT

While the effects of caffeine ingestion on endurance performance are well known, its effects on cardiopulmonary responses during a maximal graded exercise test have been less explored. This study systematically reviewed and meta-analyzed studies investigating the effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test. A search was performed in four databases, and study quality was assessed using the PEDro scale. Data reported by the selected studies were pooled using random-effects meta-analysis, with selected moderator effects assessed via meta-regression. Twenty-one studies with good and excellent methodological quality were included in this review. Compared to placebo, caffeine increased peak minute ventilation (SMD = 0.33; p = 0.01) and time to exhaustion (SMD = 0.41; p = 0.01). However, meta-regression showed no moderating effects of dosage and timing of caffeine ingestion, stage length, or total length of GXT (all p > 0.05). Caffeine ingestion did not affect peak oxygen uptake (SMD = 0.13; p = 0.42), peak heart rate (SMD = 0.27; p = 0.07), peak blood lactate concentration (SMD = 0.60; p = 0.09), peak tidal volume (SMD = 0.10; p = 0.69), peak breathing frequency (SMD =0.20; p = 0.23), or peak power output (SMD = 0.22; p = 0.28). The results of this systematic review with meta-analysis suggest that caffeine increases time to exhaustion and peak minute ventilation among the cardiopulmonary variables assessed during GXT.

6.
Eur J Appl Physiol ; 122(2): 371-382, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34739602

ABSTRACT

PURPOSE: The study aimed to assess the metabolic impact of elite Brazilian U-20 players using the rating of perceived exertion scale (RPE) to discriminate metabolomics sensitivity post-two soccer games separated by a short recovery interval. METHODS: Urine was collected immediately and then 20 h after two soccer matches of elite Brazilian U-20 players. RPE was collected after games. The spectra were pre-processed using TopSpin®3.2 software. Chenomx®software was used to identify metabolites in the urine through the available database. RESULTS: The results showed that the metabolic pathways related to energy production, cellular damage, and organic stresses were changed immediately after the game. 20 h after the games, antioxidant and anti-inflammatory pathways related to cell recovery were identified (e.g., gallic acid, ascorbate, and betaine). The matrix of positive correlations between metabolites was more predominant and stronger after game 2 than game 1. T-distribution registered metabolites discriminated below and above 7 on the RPE scale. Athletes with higher RPE values showed a high metabolite profile related to muscle damage (e.g., creatine, creatinine, and glycine) and energy production (e.g., creatine, formate, pyruvate, 1,3 dihydroxyacetone) 20 h post-soccer match. There was a different metabolic profile between athletes with higher and lower RPE values. CONCLUSION: Metabolomics analysis made it possible to observe the metabolic impacts of energy production and muscular damage. RPE identified internal load changes within the group as a result of match intensity in soccer. The correlation matrix indicated a greater predominance of positive and strong correlations between metabolites in the second game compared to the first game.


Subject(s)
Athletic Performance/physiology , Metabolomics , Physical Exertion/physiology , Soccer/physiology , Biomarkers/urine , Brazil , Humans , Male , Young Adult
7.
Appl Physiol Nutr Metab ; 46(10): 1196-1206, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33779293

ABSTRACT

We investigated the effects of acute and chronic exercise, prescribed in different intensity zones, but with total load-matched on mitochondrial markers (cytochrome C oxidase subunit IV (COX-IV), mitochondrial transcription factor A (Tfam), and citrate synthase (CS) activity in skeletal muscles, heart, and liver), glycogen stores, aerobic capacity, and anaerobic index in swimming rats. For this, 2 experimental designs were performed (acute and chronic efforts). Load-matched exercises were prescribed below, above, and on the anaerobic threshold (AnT), determined by the lactate minimum test. In chronic programs, 2 training prescription strategies were assessed (monotonous and linear periodized model). Results show changes in glycogen stores but no modification in the COX-IV and Tfam contents after acute exercises. In the chronic protocols, COX-IV and Tfam proteins and CS adaptations were intensity- and tissue-dependent. Monotonous training promoted better adaptations than the periodized model. Training at 80% of the AnT improved both performance variables, emphasizing the anaerobic index, concomitant to CS and COX-IV improvement (soleus muscle). The aerobic capacity and CS activity (gastrocnemius) were increased after 120% AnT training. In conclusion, acute exercise protocol did not promote responses in mitochondrial target proteins. An intensity and tissue dependence were reported in the chronic protocols, highlighting training at 80 and 120% of the AnT. Novelty: Load-matched acute exercise did not enhance COX-IV and Tfam contents in skeletal muscles, heart, and liver. In chronic exercise, COX-IV, Tfam, and CS activity adaptations were intensity- and tissue-dependent. Monotonous training was more efficient than the periodized linear model in adaptations of target proteins and enzymatic activity.


Subject(s)
Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Organelle Biogenesis , Physical Conditioning, Animal , Adaptation, Physiological , Anaerobic Threshold , Animals , Citrate (si)-Synthase/metabolism , DNA-Binding Proteins/metabolism , Electron Transport Complex IV/metabolism , Glycogen/metabolism , Lactic Acid/blood , Male , Mitochondrial Proteins/metabolism , Rats , Rats, Wistar , Transcription Factors/metabolism
8.
PLoS One ; 13(2): e0192835, 2018.
Article in English | MEDLINE | ID: mdl-29489872

ABSTRACT

This study was divided into two complementary parts. In Part 1, we proposed a novel paddle strokes analysis based on the force signal from a 30-s all-out tethered test; and compared these results with video recordings. In Part 2, we investigated the relationship between force data from the same test with paddle stroke results from both methods. Eleven male elite slalom kayakers (Brazilian national team) were evaluated. The tethered test was conducted for force parameters analysis (peak-force, mean-force, impulse). Video recording analysis was conducted, and the performed strokes (V.NumberPaddle) was counted and frequency (V.FrequencyPaddle) calculated by the V.NumberPaddle divided by 30 (i.e. total time of test). The new method consisted of performed strokes and frequency achievement from a load cell force signal analysis (S.NumberPaddle and S.FrequencyPaddle, respectively). Paired test-t did not show difference between methods results, but significant correlations were only obtained for the number of paddle strokes. Force parameters were only correlated with S.NumberPaddle and S.FrequencyPaddle. Overall, considering the theoretical and practical application, we propose that the new method should be used as an alternative to the video recording.


Subject(s)
Ergometry/methods , Water Sports/physiology , Acceleration , Adolescent , Biomechanical Phenomena , Data Interpretation, Statistical , Ergometry/statistics & numerical data , Humans , Male , Muscle Strength , Video Recording , Young Adult
9.
PLoS One ; 13(2): e0192552, 2018.
Article in English | MEDLINE | ID: mdl-29444141

ABSTRACT

The purpose of the study was to investigate if the 3-min all-out test (3MT) is valid for obtaining critical power intensity (CP) and the amount of work that can be performed above CP (W') on non-motorized treadmills in tethered running. Eight physically active individuals (24 ± 3 years; 78.3 ± 8.7 kg; 179 ± 5 cm; 9.0 ± 2.5% body fat) performed four different efforts at constant intensity to exhaustion in order to determine CP and W'. The mechanical power values obtained were subsequently plotted with their corresponding time to exhaustion (limit time) for application of three mathematical models: power hyperbolic versus time limit (Hyp), linear power versus 1/time (P vs 1/t) and linear work versus time limit (Ԏ vs t). The 3MT test was carried out on the last day to determine end power (EP) and anaerobic capacity (WEP) using this methodology. EP value of 181.7 ± 52 was similar (p = 0.486) to 178.2 ± 61 (CP Hyp), 191.4 ± 55 (Ԏ vs t) and 188.3 ± 55 (P vs 1/t). WEP value of 17.9 ± 4.8 was not similar (p = 0.000) to 50.2 ± 15.3 (CP Hyp), 44.8 ± 8.7 (Ԏ vs t) and 45.5 ± 8.4 (P vs 1/t). Positive results (r = 0.78-0.98 and ICC = 0.88-0.99) of Pearson correlation and intraclass correlation (ICC-absolute agreement) were found for aerobic applications of conventional CP and 3MT. For anaerobic data, only the three models of conventional CP were correlated (r = 0.76-0.93); however, W' from the three models was not correlated with WEP (r = 0.37-0.52). The results of this study suggest that 3MT in tethered running on non-motorized treadmills is a valid test for estimating CP aerobic parameters in a single day of application but not anaerobic parameters of W'.


Subject(s)
Anaerobiosis , Physical Exertion , Running , Adult , Humans , Male , Young Adult
10.
PLoS One ; 12(2): e0172032, 2017.
Article in English | MEDLINE | ID: mdl-28182775

ABSTRACT

The purpose of the current study was to investigate the relationship between alternative anaerobic capacity method (MAODALT) and a 30-s all-out tethered running test. Fourteen male recreational endurance runners underwent a graded exercise test, a supramaximal exhaustive effort and a 30-s all-out test on different days, interspaced by 48h. After verification of data normality (Shapiro-Wilk test), the Pearson's correlation test was used to verify the association between the anaerobic estimates from the MAODALT and the 30-s all-out tethered running outputs. Absolute MAODALT was correlated with mean power (r = 0.58; P = 0.03), total work (r = 0.57; P = 0.03), and mean force (r = 0.79; P = 0.001). In addition, energy from the glycolytic pathway (E[La-]) was correlated with mean power (r = 0.58; P = 0.03). Significant correlations were also found at each 5s interval between absolute MAODALT and force values (r between 0.75 and 0.84), and between force values and E[La-] (r between 0.73 to 0.80). In conclusion, the associations between absolute MAODALT and the mechanical outputs from the 30-s all-out tethered running test evidenced the importance of the anaerobic capacity for maintaining force during the course of time in short efforts.


Subject(s)
Anaerobic Threshold , Running/physiology , Adult , Exercise Test/methods , Humans , Male , Oximetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...